Simultaneous measurement of beat-to-beat carotid diameter and pressure changes to assess arterial mechanical properties.
نویسندگان
چکیده
Use of local arterial distensibility measurements by change in carotid artery diameter divided by pulse pressure has limitations because blood pressure is often taken in a vessel distant or at a time different from where and when change in diameter is taken. In 92 subjects (23 to 91 years of age), carotid artery diameter was continuously measured ecographically, whereas blood pressure was continuously measured simultaneously tonometrically on the contralateral artery, the 2 signals being synchronized via 2 EKGs. Within each cardiac cycle, there was a linear relationship between the changes in vessel diameter and the changes in blood pressure during either the protomesosystole or the diastole after the dicrotic notch. The diastolic slope was displaced upward and steeper than the systolic slope, the pressure-diameter loop showing a hysteresis. Both slopes showed a high reproducibility when data were averaged over a several-second period. There were small differences between consecutive cardiac cycles, suggesting that modulation of arterial mechanical response to continuous changes in intravascular pressure may undergo physiological variations. In the 92 subjects, systolic and diastolic slopes correlated significantly with distensibility values obtained by Reneman formula and exhibited a close inverse relationship with each subject's age and systolic blood pressure, thereby showing the ability to reflect age- and pressure-dependent large artery stiffening. This method may allow precise assessment of man's arterial mechanical properties within each cardiac cycle. This highly dynamic assessment may help to collect information on properties of normal and altered large elastic arteries and the mechanisms involved in disease.
منابع مشابه
Evaluation of Diameter Changes, Stress-strain Elastic Modulus and Stiffness in Normal and Atherosclerotic Common Carotid Arteries in Both Sex Based on End Pressure Variation
Evaluation of elastic properties of major arteries is subject of great interest with respect to the development of vascular diseases. In this study changes in diameter and cross-sectional area, stress-strain elastic modulus and stiffness of the common carotid arteries in healthy and atherosclerotic women and men were evaluated by using indirect end pressure changes. Variations in diameter and c...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملBeat-to-Beat Blood Pressure and Two-dimensional (axial and radial) Motion of the Carotid Artery Wall: Physiological Evaluation of Arterial Stiffness
The physiological relationship between local arterial displacement and blood pressure (BP) plays an integral role in assess- ment of the mechanical properties of arteries. In this study, we used more advanced methods to obtain reliable continuous BP and the displacement of the common carotid artery (CCA) simultaneously. We propose a novel evaluation method for arterial stiffness that relies on ...
متن کاملQuantification of mechanical and neural components of vagal baroreflex in humans.
Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure ...
متن کاملInternal carotid artery blood flow in healthy awake subjects is reduced by simulated hypovolemia and noninvasive mechanical ventilation
Intact cerebral blood flow (CBF) is essential for cerebral metabolism and function, whereas hypoperfusion in relation to hypovolemia and hypocapnia can lead to severe cerebral damage. This study was designed to assess internal carotid artery blood flow (ICA-BF) during simulated hypovolemia and noninvasive positive pressure ventilation (PPV) in young healthy humans. Beat-by-beat blood velocity (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 52 5 شماره
صفحات -
تاریخ انتشار 2008